Tangent bundles to regular basic sets in hyperbolic dynamics
نویسندگان
چکیده
منابع مشابه
Tangent Bundles Dynamics and Its Consequences
We will consider here some dynamics of the tangent map, weaker than hyperbolicity, and we will discuss if these structures are rich enough to provide a good description of the dynamics from a topological and geometrical point of view. This results are useful in attempting to obtain global scenario in terms of generic phenomena relative both to the space of dynamics and to the space of trajector...
متن کاملFlows on Vector Bundles and Hyperbolic Sets
This note deals with C. Conley's topological approach to hyperbolic invariant sets for continuous flows. It is based on the notions of isolated invariant sets and Morse decompositions and it leads to the concept of weak hyperbolicity.
متن کاملNew structures on the tangent bundles and tangent sphere bundles
In this paper we study a Riemanian metric on the tangent bundle T (M) of a Riemannian manifold M which generalizes Sasaki metric and Cheeger Gromoll metric and a compatible almost complex structure which together with the metric confers to T (M) a structure of locally conformal almost Kählerian manifold. This is the natural generalization of the well known almost Kählerian structure on T (M). W...
متن کاملTangent and Cotangent Bundles
of subsets of TM: Note that i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU = 1 (R) 2 : ii) If we de ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so (p; Xp) = ( (p); F ( Xp)); and 1 = ( 1 ; F 1 ): Now take 1 (U); 1 (V ) 2 and suppos...
متن کاملTangent and Cotangent Bundles
i) 8 (p;Xp) 2 TM , as p 2M ) there exists (U ; ) 2 S such that p 2 U ; i.e. (p;Xp) 2 TU , and we have TU = 1 (R) 2 . ii) If we de ne F : TpM ! R by F (Xp) = (Xp(x); Xp(x); :::::; Xp(x)) where x; x; ::::; x are local coordinates on (U ; ), then clearly F is an isomorphism, so (p; Xp) = ( (p); F ( Xp)); and 1 = ( 1 ; F 1 ). Now take 1 (U); 1 (V ) 2 and suppose (p; Xp) 2 1 (U)\ 1 (V ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Proceedings of the American Mathematical Society
سال: 2012
ISSN: 0002-9939,1088-6826
DOI: 10.1090/s0002-9939-2011-11001-3